Investigation of transient fault effects in synchronous and asynchronous Network on Chip router

نویسندگان

  • Pooria M. Yaghini
  • Ashkan Eghbal
  • Hossein Pedram
  • Hamid R. Zarandi
چکیده

Please cite this article in press as: P.M. Yaghini Syst. Architect. (2010), doi:10.1016/j.sysarc.201 This paper presents comparison of transient fault effects in an asynchronous NoC router and a synchronous one. The experiment is based on simulation-based fault injection method to assess the fault-tolerant behavior of both architectures. The effort has been accomplished by employing fault injector signal (FIS) in asynchronous design and synchronous one. Different fault models such as Crosstalk, SEU, and SET have been applied in both architectures to evaluate their robustness. Glitch fault model has also been injected through the asynchronous scheme. The experimental results have been considered in different aspects to estimate the NoC router’s robustness. Although asynchronous designs seems inherently fault-tolerant due to applying handshaking signals, up to 55% of the injected faults result in failure, and about 44% of injected faults are replaced by new values before turning into errors. Less than 1% of injected faults treated as latent error. Moreover, the failure rate of token generation is higher than token consumption effects. Furthermore, experiments show that asynchronous NoC router is more robust than the synchronous one by preventing the fault propagation. 2010 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CAFT: Cost-aware and Fault-tolerant routing algorithm in 2D mesh Network-on-Chip

By increasing, the complexity of chips and the need to integrating more components into a chip has made network –on- chip known as an important infrastructure for network communications on the system, and is a good alternative to traditional ways and using the bus. By increasing the density of chips, the possibility of failure in the chip network increases and providing correction and fault tol...

متن کامل

Asynchronous Bypass Channel Routers

Network-on-Chip (NoC) designs have emerged as a replacement for traditional shared-bus designs for on-chip communications. Typically, these systems require fully balanced clock distribution trees to enable synchronous communication between all nodes on-chip, resulting in higher power consumption. One approach to reduce power consumption is to replace the balanced clock tree with a globally-asyn...

متن کامل

Design of a Low-Latency Router Based on Virtual Output Queuing and Bypass Channels for Wireless Network-on-Chip

Wireless network-on-chip (WiNoC) is considered as a novel approach for designing future multi-core systems. In WiNoCs, wireless routers (WRs) utilize high-bandwidth wireless links to reduce the transmission delay between the long distance nodes. When the network traffic loads increase, a large number of packets will be sent into the wired and wireless links and can...

متن کامل

Congestion estimation of router input ports in Network-on-Chip for efficient virtual allocation

Effective and congestion-aware routing is vital to the performance of network-on-chip. The efficient routing algorithm undoubtedly relies on the considered selection strategy. If the routing function returns a number of more than one permissible output ports, a selection function is exploited to choose the best output port to reduce packets latency. In this paper, we introduce a new selection s...

متن کامل

Ternary Tree Asynchronous Interconnect Network for Gals’ Soc

Interconnect fabric requires easy integration of computational block operating with unrelated clocks. This paper presents asynchronous interconnect with ternary tree asynchronous network for Globally Asynchronous Locally Synchronous (GALS) system-on-chip (SOC). Here architecture is proposed for interconnection with ternary tree asynchronous network where ratio of number NOC design unit and numb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Systems Architecture - Embedded Systems Design

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2011